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The probkn of a gas whichis beingheatedak an e~on-

cmtiallyinmeasing rate,andwhichis confinedby a plane

wall o“funheatedmtprial, is solyed+0 fin? the fOqI of *K

mrefactionwave in the gas,and the shockwave in thewall$

‘H-mresultshawqiMen givenin graphicwd

port,IA IQ, by R. Davisand S. Franlcel.

——

our problenis to determinewhat happens

form in anotherre-
i. .—

a plane wall of ma+qberis heatedat an exponentiallyincreasingratee Aa the

p~es$we r$Jms,themall is pushedoutward,a rare$action wttvemm back inter

the @s, and a shockwavemowes fo~:ardintothe wall. For high onQu@ prm-

suresthe hintingof thewall IyyWW shookwave is sufficientto vaporizethe

wall material;we shallsupposethe pre~sureso high thatthciinternalenergy

beforethe arrivalof the shockvzwb is ne@i@ble oomparedto tho shookwave

hinting. The onlypropertiesof thowaU which then 60&&nus are 5ts initial

density,”andthe relationbetweenintorml cner~, U, and prebsure,p9 for the

vaporizednaterial. ThiswiU be takenof th~’fozmp=(~.- 3)UwithX conslxrt.

A similarprossmw-onerw relationwill‘oeUSCM3for the gas oonfimd by,@e wall.
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SiiIce the interftme

move exponentially~we first

entiallyacoelemted.piston.

Lot xbo the Ori&ld

wall, X(Sct]be its positionat
●6

. .
● 9 ●0; ●;0 ● ● *9 ●

bdmemwall and gasmy bo expectedto

considertho shookwave producedby u mpon-

positionof a ~ivonekxmt of amass in the

timet. The equationof notionis

.-.- “+-,

where 6 is the initialdensityof thematerial~

The densityat an:’Iatertimo is Givenby

.

At the wall-pistoninterface,x= 0, we havethe boundarycondition

K
*42

X(ot)= -’e “

!M boundaryconditionsat the shockfrontare

whem~f and pf are the densityand pressureat the front,V is the shock

wavovelocib~,u is the materialvelocityat the front.

materialis comprossodadiabatically:

‘l’headiabtoityof the expansionis

functionoflt; the dependenceof S

s (x) ●

expressed by the fact

on x is determinedby

(2)

(3)

(4)

(5)

(6)

(7)

that S is not a

the entropyohange

impartedby the shockvrave~

● m ● *O ..e =EiE!B “,:: ● :‘:. ●**:● *.*: ● . ‘“m$p● 0 ●:.. .:

● a ●0: ●:0●0: ●:s ● ,

● ● ..*●’* ● ● ● ●*. ●** ..
● ● 00 . ●

●

● :::.: ::: UNCLASSIFIED ‘“●***
●*.** ,***

●a* ..

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



.

x = xl (3%,/)(s) , (8)

(9)

k= ---%” ,xl e
(p(l) =1, f(l)=l (lo)

The variableJ is the milativepositionfromback

1= O at tho piston,f = 1 at the shookfront.

frontis x= X= Xle+t,the pmssuro at the frontis

to frontof the

The positionof

plea%.

.E’

shockwaves

tho shock

Using(&) and (9), (1)becomes

(11)

tho prim denoti,n&differentiationwith respectto j

(2] takesthe form

+ (12)

(33)

whence (4)gives-theboundaryoondition

(/ f(l)+-+ ..- *

The left hand sideof (7) is now

+ = _.+f ~“e’a’
i

and S(x)

hitsthe

must be tho valueof this quantity

pointx, i.eC*

irmdiatelyafterthe shockwave

Thus (7)becones

+yt’ =(++? $’, ‘
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.

This resultcan be checkedby directintqyctionof the velocityequation,

Hnally we canverifytlmtthe remining shockwave condition,(6),is

in agreementwith (5)and (6).

Tho similaritytransformation(8) and’(9) is thus compatible

with all the equationsand boundaryconditions● No aro leftwith tm

equations,(11)~ which,usin~ (M), can now be written

arid(14),whichtofletherdcdxw’ninethe two functionsf and ~ ,.and the

detailedpropertiesof the shookwave● Sincethesetwo equationsform

a secondordersystem,and tvo boundQryconditionsare givenin (10),the

solutionis WX@uoly determined.The thirdbouxhry oondi%ion(13)was used

in deriving(14),andis automaticallysatistiedin virtueof!(14)and (10).

It is-notablethat the form of the shockwave dependsonlyon Jf8% is in-

dopenden%of all other fecdmws of the pmlilcm.
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The reasonfor the appenrancoof this sin~llarityis -thene@ect of tho en-

tropyof the materialbeforothe shockwave hitsit. ltis clearfrm (24)
,

that inolusionof the initialentropywouldroundoff the dcm~ityto the

valueappropriateto m adiabatioccz~prossionfrom the initialto the final

pressure. Sinilarly,the tenperaturoat the pistonmain+.minsits initi.d

value,zero~

‘lie have expressedthe solutionin ternsof the distanceu.ovedby

the shockf’rowh,rather than the Wvtance novod @ the piston. The ratio

betweenthesedis%ancosis @ven by .?9.-...
xl - ~ (0), and can bo dete~ined

onlyb~ in,-to~rationof the equa.tion~.onCeXl is foundin thisway, tho frak%

pressureis givenby (15).

?!heequations(14)and (M) can be solvedby a straightforward

numericalintogration$dxn-tin~at
1 = 1 sincethe boundaryconditionsare

givenat tl~isend. Hear P 1, ~ and f are representedb: the power eories

f ran the energy and rmnentum co ::servation laws. The totalnomentumof the

wave is

P=&J’icLi. =O@c;e’tit‘((p-fq)’)q~Jo
.

whence,sinceP s px=,o, we obtainthe re3akion

E
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In the heatedGasvw supposethe energy

‘e’ ‘ec”nd‘s -%-–--”= ~ e2@’‘“ ~“ -~s~~

in placeof (7) we ham

W= dutpdV

whereV= ..~-
P is the spoo5fiovulume,uSUV is

generatedper gram

is no lower adiabatic,

(39)

the internd enerpy/gram~

(Vdp + ~t P@= dQ, orUitll p =(?5,- I)U, (19)becmes ~ 3- ~-.-.”.

v; + ~pi= (6”,’-l)fie2mt. (20)

The equation.of motion(1),and the mattercontinuityequation(2)

are nowwritten
\v

P~ .-u–,-t 2 %.

whore ~$ is -theinitialdensiti~of the gas.

~as-wall interface,and tho similaritytransfomatim talcesthe forn

x =x.,e”’i@(j)
p=p.te’at$({)

(21)

(22)

(23)

(24)

{25)
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Tho pressurein tho ~as not ye~.re@# *P $kc:~Qrefactionwave is -

so continuityof pressuredmamk
. .

(27)

continuousand Mm displacenentnust bo the sanefor shockand

(28)

{29)

(30)

For t %0, (30) intogritesto the form (14). Using (27),

and (29)

(32)
.,

(33)

TI’2us

(w)

the velocityof sound:which checksthatt~ l*arc3faotion wave noves with
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l’hetwo funotionsf md~ are nowdetemninedby (31)and (35).

Simi.2arequationshave ‘meaobtainedby Dirac,but with a differmt form

0?2 emqjy-genmwkion law. h analogywith tho shockwavewe havethree

boundaryconditions,@ven by (25),(26}at the backof thewave. Although

we have a third-order qm+xm of equationsthese%hreoboundaryconditionsdo

not fix a solution,since,as can be seenfrom (32),(33)3(34]~the point

\
*,“- 2 is a singularpointof the equatiions~@(. 1] and f, (-2) are nut

detenninedEbut on~~theirmtio. It then remins possibleto fit one boundary

tinuousat the interface,We

it is apparentfrom (15)that

p tindXat the interface,buk

$ = O thus takesthe form

or, using (15) &d (34)

systemat first sightseemsoverdeternined.But

the shockwave solutiondoesnot determineboth

8onlythe ratio-- --- . The bowxkry conditionwtx

.JMtil
3J’--lp(+cy 7

(36)

TIE SOLUTIONIUX?S~

Sincenumericalinto~wti.onboconesdifficultat a singular point,

it is desirableto obtainan analyticexpressionfor the solutionnear 6s-1.

&

a

conditions(25),(26)require

( (37)

● OO ● ●:0 ● oe ● 0
●*9 ● ● ● ● 0

● *98
● 0** :0 ::

● ● : ● 9
● 9 .:9 ● *e ● *9 :,0 ● o

● * ● mm ● 9O c ● ●
● 9* :00● ● 009
9** ● ● em ●
● ambo ● **
.*.+ 9e*
● * 9** ● ● ● *

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



end (35) becomes

i
a $8

%--

hdm~rding (31), and

boundaryCOllditiOYlO,

● ☛ 900 ● 0●**e*.: 9*9 9
● 9*9* ● e*
000 : 000 0
● .O
9* G“ 89●00 -.-:..:: .

choo~ingthe oonetantof integration

(39]

(40)

‘ . In virtweof (37) # my bo oonsi.doredof order~ 3 the integralon kho right

$’= -( (W,+’)%” +I(lpl)’fi:
h tams of h , (38) becomes

This can be solvedby puttingy = ~ 2, which gives

Hence ‘
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F’orsmall values of oPI

z= - z~ + @
z L-z, ~ *

1- 21) [WpT- 22 q )2 z, +...... ●

Forip (?,Z= -Zl. If c is positiveZ inoreaeeswith increasing$ .

If o = (-1)* a, a; O, Z vEwies from - Z1 to -22 as ~ goes from O to- .

This lattercaseis interestingin explainin~a non-uniformitywhichoccurs

for very dczxmwal1s. A wall of’infinitedensityof coursewill not move;

the appropriatesolutionis f81, $ =~ ,~’ = 1. %wever it followsfrom

(42), (43) that. independentof the wall density,near ~= G,$’=3Y ~ (Z2- 21),

‘P
~ sl-q(z~ -z+ Thustho densityat the back of the wave always bo@ns

to drop linoarIly,with a slopedeterminedonly by $, . !!’hoexplanationis that

for largevalues

finalvalue- 22

ishes. I?orveqy

vow backof the

of a, Z very rapidlyshiftsfrom itisini%ialvalue- Z1 to its

forwhich the coefficientof the ~-dependentte~ in {43)Wn-

denm walls the rapidohangein densityis thws oonfinedto the

wave;ma soon as ay>~ls the rate of changein densitybeoomes

BlWJWIOR”N13Al?TIElIUTEIW’ACE

The numericalintegrationof (31)and (35)can now be carriedout by

5startingzear z .1,

oarryingthe’solution

to a certainvalueof

thatthe

pressure

w

OrM cheek on

expamion of

usin~ the solutions(42),(43)with a trialvalueof o, and

to (:.0. The solutionobtainedwill be that appropriate

-4- --s’<z+-})— ‘ dekenninedby (36)*

the numericalintegrationcan be obtainedfromthe fact

the materialnear the interfacetakesplacewhen the

is low and littleworlcis done, so the temperatureshouldbe tho same

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



● ☛ ● O* ● m
● a* ●°0 : 9** ●

lyticallyfrcxn(39)8which ~ivosas tho leadin~termnear =0, i’(0)$’(0)=1.i

nomontutn

fromthe energy law

3
= $-1

(17) and (18),fr”omthe

lJ *
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