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EXPONGETIAL SHOCK AND RAREFACTION WAVES \ f"f'
/1
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The problem of a gas which is beinp; heated at an expon-

entially inoreasing rate, and which is confined by a plane

—— -
= ,\;L , wall of unheai:ed neterial, is solved 'bo f'lnd the form of the

& ® E

=1 rarefac tion wave in '!:.he ges, and the shock wave in the walle -
i=n '
==Y

§E<‘3; - The results have boen given in graphical form in enother re=-

s=3 | -
2%%? port, LA 10, by Re Davis and S. Frtmkel. =
=9 . — 5
=m [’ ~

a

Our problezi is: Yo dotermine whot happens when & gag contained by

a plane wall of matter is heated at au exponsatially increas‘.ing rate. As the
pressure rises, the wall is pushed outward, a rarefaction wave runs back inte
the ges, and a shock wave moves forward inte the walle For high enough preose
sures the heating of the wall by the shock wave is sufficient te vaporize the
wall material; wo shall suppose the pressure so high that the interﬁal energy
before the arrival of the shock wave is negligible compared to the shook wave
hoating. The only properties of tho wall which then dohdern us are its initial
density, and the relation between internal energy, ﬁ', and pressure, p, for the

vaporized material. This will be telzon of thél £6m p= (¥ .= 1)U with ¥ constant.

A similar prossure~cnergy relation will be used for the ges confined by the well.
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THR mo&\; NTIAL SHOCK VAVE EERT I .

Since the inberface betweon wall and gas may be expected to

move exponentially, we first consgider ﬁho shock wave produced by an oxpone

entially accelerated .pistone.

Lot x be the original position of a given element of a mass in the

wall, X(xt)} be its position at time t. The equation of motion is

pE = - edBen, (1)

where £ is the initial density of the material,

The donsity at anr later time is glven by

£ = 1
r T oax/ 3z . @)

At the wall-piston interface, x = 0, we have the boundary condition

x (ot) = X &% . (3)
The boundery conditions at the shock front are
..i.,..

b = &= 1 (4)
2 _ ¥+ Pe.. -

V"2 "¢ (5)
+_ 2 N\

W= 75 A (8)

¥+ r,

i
where Pp and pp are the density end pressure at the front, V is the shock
wave velocity, u is the meterial velocity at the front. Bohind the front the
matorial is comprossed adiababically:

--"09'3-,- = S(x). (7
The adiabicity of the oxpansion is expressed by the faot thet S is not a

function of %; the dependence of S on x is detormined by the entropy change

imparted by the shock wave,

[
'
soe ° i
° e o
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Teller has showm that these equattons 'co.ri be* 6o;veof by a similarity

transformation of the form

X=X ~tls) (8)
p= p ¥ £ (s) , (9)
t = 5'1'3-' s W=, 2 (W)=1 (10)

The variable ¥ is the rolative position from back to front of the shock wave,
£ = 0atthe piston, § = 1 at the shook frount. The position of tho shock
front is x =X=X;6"t, the prossure at the front is pleg“t.
Using (&) and (9), (1) becomes ‘
A L RS ARE S i o
the prime denoting differentiation with respect o j: |

(2) takes the form

¢
= ‘10 P (12)
whence (4) gives the boundary oondition
AR .
@)= o (33)

The left hand side of (7) is now
E E -4
P = Y f LP c /

and S{x) must be thoe value of this quantity imnmediately after the shock wave

w) T (%)

hits the point x, .ec;

S(x)= g f (’7(‘9"‘>)K(€"“t)x=x‘e°‘* ‘

Thus (7) becomes
¢-1 ¥ 2 . ‘ )
'F k? X+: > § . (14)

R Uﬁ/c[[
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The shock wave veloocity equatbion,*(§),:silves AR ~
; Lat 2. b3 2 nT
= K X

T ¥+ e
\'J- 4 73:,‘ 'oe )

or - R, (15)

/foe."‘X.‘ Y

This result can be checked by direct integretion of the velocity equafion,
4

— ot t € t ' o~
- L B x g+ b, & .
Xe -jn\/if 57 Loe« ‘V z 7 .

I'inally we cen verify that the rermining shook wave condition, (6), is

satisfied: the material vslooity at any point is
e ) -
X=X (¢-fye "
- — ' =t At ya
- - - - P = T .
o WX =xX (1-9)e =E e =5V,

in agreemont with (5) and (6).
Tho similarity transformation (8) and (9) is thus compatible
with all the equations and boundary conditions, We are left with two

equations, (11), which, using (15), can row be written
)

§&LP“"§LP"" Y = - E,il t, (16)

and (14), which tozether dotermine the two functions f and Y , and the

detailed properties of the shoeck weve, Since these two equations form

& second order system, and two boundery conditiocns are given in (10}, the
solution is uniquoly determined. The third bourdary condition (13) was used
in deriving (14), and is automatically satisfied in virtue of (14) and (10).

I% is-notable that the form of the shock wave depends only on ¥ and is in-

.

. il
e TIASSRR)

dependent of all other features of the problem.

_UNCLASSIFIED
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It follows from (14) that, sincs the nrase:ure.'«vnﬁ the!rei‘orc £

R I “fy

reneins {inito at the piston, the density becrmeos infinito ag % .

4

The roason for the appearancc of this singularity is the noglect of the en-
tropy of tho material before the shock wave hits it. It is clear from (14)
thet inclusion of the initial entropy would round off tho density to the
value appropriaste to an adiabatic eompression from the initial to %the final
pressurc, Sinilarly, the temperature at the piston maintains its initial
value, zero,
e have expressed the solution in terms of the disbance noved by
the shock front, rather then the distence moved by the pistonts The ratio
between these distances is given by -;g---—-: g{) (0), and cen be detem':‘med
only by intopration of the equations. Once %, is found in this way, the {rost
pressure is given by (15). |
The equations {(14) and (16) can be solved by a streightforward
mmerical intogration, starting at j:» .1 since the boundary conditions are
givon st this ond. Year g = 1, Y and £ are represented by the power series
ooty (-]
for+ Bann ey
4 useful check on the numerical integration can be obtained
fron the energy and momentum co:servation laws. The totel momentum of the

vave is
! 2 2t g [ .
P dx =X e (0-5")ds
-]
whenee, since P = Px 20» We oblain the relation

£ @e(een | (@=g@')dg=lm)(2f L=

B (i 49 WA —
X ’:3*‘3[:::. iy e U
T DN
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and its rate of changs is E = (ph),! =0 » whwqh giﬂ%s‘ o E .‘.

-F(o)q)(o)z-([ J{Lp,,_\m(hp LPf)ja’f | (18)

THE RAREFACTION VWAVE

In the heated gas ve suppose the energy generated per gram
per second is -g%----:é 82% %, o expansion is no longer adiabatie,

in place of {7) we have

dQ= du+pdv (19)
whers V= ‘_7;1_” 1s the specific valume, ua UV is the internal energ;y/gfam.
Uith p=(¥, - 1)U, (19) becomes ?"l'i'i (Vdp + ¥ pdv)= &Q, or
Vo + pV = (¥, - 1)E 20 Y, (20)

The equation of motion (1), end the mettor continuity equation (2)

are nov written

£X=~-§—f~-> (21)
/2 X (22)
/6x ‘

whore ﬁ‘ is the initial density of the £ASe
In the gas x is talen norative, x =0 being, as before, the

gas~wall intorface, and the sinilarity trensformation takes the form

X = X.,e”w() (25)
b= P e™ (f) (24)
{ "’f?é% SR YEONE (25)

§ now runs rfrom -1 at the back of the rarefection wave s 50 0 at the
interface. At the back of the wave x=X= X3 e*t, P>D.y o% b,

The boundary conditions at the back of the wave are the continuity

cf [J and p. Since ,;' =8 t . the dens:.i:y aondition is 'lu(:' ASS!HED
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The pressure in the gas not ye'b-.rcachzci e tre rgrefaction wave is

. . .. . . R ) At
P (y"‘>-) {K "'1) eee E/Joo ooo &o (r ?:;EP’A ek
so conbtinuity of prossure dema.nau
F‘; = ({; 2)&/)04 . (27)
-t ”

The bourdary conditions at the interface are thal the pressurc nust be

J

continuous and the displecement must bo the sane for shock and rarefaction wavess

In place of (11) we now heve

o=t Ty “"‘P"'..%"_j'o«‘ T, (20)

while (20) gives

, ; . (‘{ f)E, [.:
(26 -§€ )P — ¥ %% O’ “p, (29)
which can be rouritiean ve e K‘)‘ ¢,
c.L (£ £ LQ >__ (-08p, X (50)
% P 5
For £20, (30) mtegrates to the fom (14). Using (27),

P ( ﬂ:.&@:.:.) .é.‘.—f_'j_‘__ (21)
d § 3 ¢’ .

A reletion snelogous o (15) can be obteined by comparing (28) and (29)

at g:: =l. In virtue of (25) and (26), (28) reduces to

O A =y

while (29) gives

: {
P (-1) = 'r")c (-1). (33)
Thus '
{
:-r!-——_n - ——
‘-II:OKL 8 ’ (34:)

wihich checks that the rarefachion wave noves with tho velocity of sound:

T ¢
<t T T v
'X,_‘E 2[,3”'7?‘.. Ak ~I/ 2, L}C At = VR

e
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(28) thus becomes .:' EEEN 'E' g" :$° ‘

T
£~ e bt e (55)

The two functions £ and ¥ are now determined by (31) and (35).
Similer equations have vsen obtained by Dirac, but with a differcat form
ol energy-generation law. In analogy with the shock wave we have three
boﬁndary conditions, given by (25), (26), at the back of the wave. Although
we have a third-order sypstem of oquations these three boundary conditions do
not {ix a solution, since, as can be seen from (32), (33), (34), the point
g = = 1 is a singular point of the equations: LP"(- 1) end £t (- 1) are nct
detemined, ub only their ratio. It then remains possible to fit one bowmdary
condition at the interface. Since both prossure and displacenment must be con~
binuous at the interface, the system at first sight seems overdetermined. Buft
it is apparent from (15) that the shock wave sclution dooes not determine both

p and X ot the interface, but only the ratio -}EB“_ « The bouxdary condition at

(-0 E,ﬁﬁ-ol
X P(-0)* 1(_ l{?(-ro)

or, using (15) and (34)

£ £eoy | 2A £00_ ()
¥ QoY 4r \P(+o)

T SOLUTION ITTAR §= 1

g = O thias tales the fom

Sinece numorical intogration bocomes difficult a% a sinpgular point,
it is desirabie to obtain an analytic expression for the solution uncar }a—l.
Urite (P .—_g 44, o The boundary conditions (25), (28) require

2(0) = 22 (0)= 0, . (37)
k)

L | —

APP.RO\./.E.D FOR PUBLI C RELEASE
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and (35) beccmes , e, 8 3 % e 23
[ TR S L
AR (38)
Intorrating (31), and choosing the constant of integration to satisfly the
boundary conditions, ¢
. ' 8-t
£9'h | £
___&Q;_ ={-2 .ﬁ%—. g( 5 (39)
- o . .
or, writing § -H')] £ . :
A L’ g (ML . | (40
(‘ i")"‘ -—-"‘{" -( (1"’n)3 n )
© In virtue of (37) %! may be considered of order Y| ; the integral on tho right
is tlen |
[+ zf" (8% iy 2 + 2(f-1)%+0(n*),
. (i-n)? (- h)"

and (40) gives

£oimg o+ WA K 2 (8% -0 (W),

Ce =¥, (1=, )K" + 2 (8=1)%.
In tems of W , (38) becomes
(- A"~ (1% k= (1 - () %)% - 2
or, keeping only the leading terms in n »
(- ZV\*(&HW )'r,"%(““ AV - (41)

tyse - ;""“h « Bge. (41) dakes the form
(]

L sy-z . A(3%-2) W,
'? - ¥, (%) Ll +1)t 4

This can be solved by pubtting y = ?“Z which gives

l2 _ (2+2¥2+2,) .n7 - 28=2,7 2,2
,+1

(4 =)
AP

dh Z zf(x-u)
ilence
' 247 ,
n j(z«rz,)(z +Z,)
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For small values of o .

2= -2y %+ (23 - %) [(orﬂz‘:'{'?’- 2 (cr‘ )‘9‘ l‘ig‘b +......] .

For h=0, 2= =~ 2;. If ¢ is positive Z incroases with incrcasing B .
Ife = (-l)"a.%-’i‘.’ a, a> 0, 2 veries from - Z7 to ~ Zp as n goes from 0 towd
This lattor case is inberesting in explaining a non-uniformity which occurs
for very dense walls. A wall of infinite density of course will not nove;
the appropriete solution is £21,P= g ,iP' = 1. FHowever it follows from
(42), (43) that, indepondent of the wall density, near n=0,P=1+Wn (23 - Z3),
Y 1-n(2y ~2;). Thus the density at the back of the wave always bogins
to drop lincarly, with a slope determined only by b’, » Thoe explanetion is that
for large values of a, Z very ropidly shifts from its initlal value - Z; Yo its
finel value - Zp for which the coefficient of the n -dependent tern in (43) van-
ishes. For very demse walls the rapid change in density is thus confined to the

very back of the wave; as soon as aqﬂ’l, the rate of change in density becomes

of order %,»‘2'55.:&'

BEHAVIOR NEAR TIE THTERFACE

The numerical integration of (31) and (35) cen now be carried out by
starting near § = =1, using the solutions (42), (43) with a trial value of o, and
carrying the solution to (":. O. The solution obtained will be that appropriate
2 p:l b."
‘o ri 1 L
& cortain value o 7, (Z+ N

One check on the numerical integrotion cean be obtained from the fact

, determined by (36).

that the expansion of ‘the meterial mear the interface tekes place when the

pressure is low and little work is done, so the temperature should be tho same

K’L'

L J
3 E E'E;}EE' :

L4 ¢
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as in the material not yet reaqﬁed obntheom:oﬁe‘. :I.‘hILS can be verified ana~
lytically from (39), which gives as the leadmg torm near §..0, £{(0) kP (0)=1.

\ls also heve the rclations analogous to (17) and (18), from the
momentum law

£(0)= 1 -~ 27 l"_zjtpdg-rl].

{ron the encrgy law

Flo)p(o) = 72 - 3 L—,-'~ {0 (p-g) ] 4.
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